MATH 5061 Problem Set 4¹ Due date: Mar 17, 2021

Problems: (Please hand in your assignments via Blackboard. Late submissions will not be accepted.)

Throughout this assignment, we use (M, g) to denote a smooth *n*-dimensional Riemannian manifold with its Levi-Civita connection ∇ unless otherwise stated. The Riemann curvature tensor (as a (0, 4)-tensor) of (M, g) is denoted by R.

1. Prove the second Bianchi identity: for any vector fields $X, Y, Z, W, T \in \Gamma(TM)$,

 $(\nabla_X R)(Y, Z, W, T) + (\nabla_Y R)(Z, X, W, T) + (\nabla_Z R)(X, Y, W, T) = 0.$

- 2. Suppose that (M^n, g) is a connected Riemannian manifold with $n \ge 3$ such that there exists a function $f: M \to \mathbb{R}$ such that $K(\sigma) = f(p)$ for all two-dimensional subspace $\sigma \subset T_p M$. Show that f must be a constant function on M.(*Hint: use the second Bianchi identity*)
- 3. A Riemannian manifold (M^n, g) is called *Einstein manifold* if there exists a smooth function $\lambda : M \to \mathbb{R}$ such that $\operatorname{Ric}(X, Y) = \lambda \langle X, Y \rangle$ for any vector fields $X, Y \in \Gamma(TM)$.
 - (a) Suppose (M^n, g) is a connected Einstein manifold with $n \ge 3$, show that λ must be a constant function.
 - (b) Suppose (M^3, g) is a connected 3-dimensional Einstein manifold. Show that M has constant sectional curvature.
- 4. Let $f: M \to \mathbb{R}$ be a smooth function defined on a Riemannian manifold (M^n, g) . Denote $\Sigma := f^{-1}(a)$ where a is a regular value of f. Show that the mean curvature H, with respect to the unit normal $N = -\frac{\nabla f}{|\nabla f|}$, of the hypersurface Σ is given by $H = \pm \operatorname{div} N$ (up to a sign depending on the sign convention in the definition of mean curvature).
- 5. Consider the smooth map $F : \mathbb{R}^2 \to \mathbb{R}^4$ defined by

$$F(u, v) = (\cos u, \sin u, \cos v, \sin v).$$

- (a) Show that F is an isometric immersion (with respect to the flat metrics).
- (b) Prove that the image of F lies inside the round 3-sphere $\mathbb{S}^3 := \{x \in \mathbb{R}^4 \mid |x|^2 = 2\}$, and $\Sigma = F(\mathbb{R}^2)$ is a minimal immersion into \mathbb{S}^3 , equipped with the induced metric from \mathbb{R}^4 .

¹Last revised on March 19, 2021